jump to navigation

CP-violation in charm observed at CERN March 21, 2019

Posted by apetrov in Near Physics, Particle Physics, Physics, Science.
trackback

 

There is a big news that came from CERN today. It was announced at a conference called Recontres de Moriond, one of the major yearly conferences in the field of particle physics. One of the CERN’s experiments, LHCb, reported an observation — yes, observation, not an evidence for, but an observation, of CP-violation in charmed system. Why is it big news and why should you care?

You should care about this announcement because it has something to do with how our Universe looks like. As you look around, you might notice an interesting fact: everything is made of matter. So what about it? Well, one thing is missing from our everyday life: antimatter.

As it turns out, physicists believe that the amount of matter and antimatter was the same after the Universe was created. So, the $1,110,000 question is: what happened to antimatter? According to Sakharov’s criteria for baryonogenesis (a process of creating  more baryons, like protons and neutrons, than anti-baryons), one of the conditions for our Universe to be the way it is would be to have matter particles interact slightly differently from the corresponding antimatter particles. In particle physics this condition is called CP-violation. It has been observed in beauty and strange quarks, but never in charm quarks. As charm quarks are fundamentally different from both beauty and strange ones (electrical charge, mass, ways they interact, etc.), physicists hoped that New Physics, something that we have not yet seen or predicted, might be lurking nearby and can be revealed in charm decays. That is why so much attention has been paid to searches for CP-violation in charm.

Now there are indications that the search is finally over: LHCb announced that they observed CP-violation in charm. Here is their announcement (look for a news item from 21 March 2019). A technical paper can be found here, discussing how LHCb extracted CP-violating observables from time-dependent analysis of D -> KK and D-> pipi decays.

The result is generally consistent with the Standard Model expectations. However, there are theory papers (like this one) that predict the Standard Model result to be about seven times smaller with rather small uncertainty.  There are three possible interesting outcomes:

  1. Experimental result is correct but the theoretical prediction mentioned above is not. Well, theoretical calculations in charm physics are hard and often unreliable, so that theory paper underestimated the result and its uncertainties.
  2. Experimental result is incorrect but the theoretical prediction mentioned above is correct. Maybe LHCb underestimated their uncertainties?
  3. Experimental result is correct AND the theoretical prediction mentioned above is correct. This is the most interesting outcome: it implies that we see effects of New Physics.

What will it be? Time will show.

More technical note on why it is hard to see CP-violation in charm.

Once reason that CP-violating observables are hard to see in charm is because they are quite small, at least in the Standard Model.  All final/initial state quarks in the D -> KK or D -> pi pi transition belong to the first two generations. The CP-violating asymmetry that arises when we compare time-dependent decay rates of D0 to a pair of kaons or pions to the corresponding decays of anti-D0 particle can only happen if one reaches the weak phase taht is associated with the third generation of quarks (b and t), which is possible via penguin amplitude. The problem is that the penguin amplitude is small, as Glashow-Illiopulos -Maiani (GIM) mechanism makes it to be proportional to m_b^2 times tiny CKM factors. Strong phases needed for this asymmetry come from the tree-level decays and (supposedly) are largely non-perturbative.

Notice that in B-physics the situation is exactly the opposite. You get the weak phase from the tree-level amplitude and the penguin one is proportional to m_top^2, so CP-violating interference is large.

Ask me if you want to know more!

Comments»

No comments yet — be the first.

Leave a comment