jump to navigation

Inverse superconductivity in iron telluride April 1, 2012

Posted by apetrov in Funny, Near Physics, Physics, Science, Uncategorized.
trackback

One of the most significant advances of science in the 21st century so far is the 2008 discovery of iron-based high temperature superconductors such as LaFeAsO1-xFx. Previously, all high-temperature superconducting compounds, there so-called cuprates, were based on copper and consisted of copper oxide layers sandwiched between other substances. Much of the interest in those materials has arisen because the new compounds are very different from the cuprates and may help lead to a theory that is different from the conventional BCS theory of superconductivity, where electrons pair up in such a  way that  so coupled they can then move without resistance through the atomic lattice.

Among those new materials is the iron telluride, FeTe. This compound has the simplest crystal structure and exhibits antiferromagnetic ordering around 70 K and does not show superconductivity. It is now known that substitution of S for Te sites suppresses the antiferromagnetic order and induces superconductivity. Quite amazingly, this is not the most surprising property of those compounds. In a quite remarkable study performed by a group of Japanese physicists, it was shown that the iron-based compound FeTe0.8S0.2 exhibit superconductivity if soaked in red wine. They also performed a study of the effect with different types of wine and other alcoholic beverages, finding that a particular type of wine, 2009 Beajoulais from the French winery of Paul Beaudet, has the most profound effect.

A recent follow-up analysis, however, showed that subsequent and repeated applications of red wine and hard alcoholic beverages, such as cognac or vodka, can induce a new state in the study samples, dubbed the inverse superconductivity. The results, reported in the recent issue of Wine Spectator, clearly show steep increase of the samples’ resistivity after only five consequent applications of the liquid substance. As explained by the lead author of the study, John Piannicca, the results follow the simple model of the electron crowd. Interestingly enough, as reported by Dr. Piannicca, this model was developed by observing the change in the mean free path of a group of students visiting bars near the campus of his University.

Moreover, as was shown in a recent work of a group of scientists at the Siberian institute of Advanced Kevlar Engineering, it is also the quantity of alcohol that was responsible for the onset of inverse superconductivity. While this is also consistent with the already mentioned model of electron crowd, the samples obtained in the Siberian lab required much larger quantities of alcohol to achieve the same effect than those obtained in the American or Japanese labs, which could probably be explained by the specifics of liquid utilization. As was shown, the best effect was achieved with a brand of vodka “Imperia” commonly “recognized for it superbly smooth spirit and pure taste,” as advocated by its producers. It would be interesting to see how other brands would fare in such a study, which is on-going.

Comments»

No comments yet — be the first.

Leave a comment