jump to navigation

Non-linear teaching October 9, 2017

Posted by apetrov in Blogroll, Physics, Science.
1 comment so far

I wanted to share some ideas about a teaching method I am trying to develop and implement this semester. Please let me know if you’ve heard of someone doing something similar.

This semester I am teaching our undergraduate mechanics class. This is the first time I am teaching it, so I started looking into a possibility to shake things up and maybe apply some new method of teaching. And there are plenty offered: flipped classroom, peer instruction, Just-in-Time teaching, etc.  They all look to “move away from the inefficient old model” where there the professor is lecturing and students are taking notes. I have things to say about that, but not in this post. It suffices to say that most of those approaches are essentially trying to make students work (both with the lecturer and their peers) in class and outside of it. At the same time those methods attempt to “compartmentalize teaching” i.e. make large classes “smaller” by bringing up each individual student’s contribution to class activities (by using “clickers”, small discussion groups, etc). For several reasons those approaches did not fit my goal this semester.

Our Classical Mechanics class is a gateway class for our physics majors. It is the first class they take after they are done with general physics lectures. So the students are already familiar with the (simpler version of the) material they are going to be taught. The goal of this class is to start molding physicists out of students: they learn to simplify problems so physics methods can be properly applied (that’s how “a Ford Mustang improperly parked at the top of the icy hill slides down…” turns into “a block slides down the incline…”), learn to always derive the final formula before plugging in numbers, look at the asymptotics of their solutions as a way to see if the solution makes sense, and many other wonderful things.

So with all that I started doing something I’d like to call non-linear teaching. The gist of it is as follows. I give a lecture (and don’t get me wrong, I do make my students talk and work: I ask questions, we do “duels” (students argue different sides of a question), etc — all of that can be done efficiently in a class of 20 students). But instead of one homework with 3-4 problems per week I have two types of homework assignments for them: short homeworks and projects.

Short homework assignments are single-problem assignments given after each class that must be done by the next class. They are designed such that a student need to re-derive material that we discussed previously in class with small new twist added. For example, in the block-down-to-incline problem discussed in class I ask them to choose coordinate axes in a different way and prove that the result is independent of the choice of the coordinate system. Or ask them to find at which angle one should throw a stone to get the maximal possible range (including air resistance), etc.  This way, instead of doing an assignment in the last minute at the end of the week, students have to work out what they just learned in class every day! More importantly, I get to change how I teach. Depending on how they did on the previous short homework, I adjust the material (both speed and volume) discussed in class. I also  design examples for the future sections in such a way that I can repeat parts of the topic that was hard for the students previously. Hence, instead of a linear propagation of the course, we are moving along something akin to helical motion, returning and spending more time on topics that students find more difficult. That’t why my teaching is “non-linear”.

Project homework assignments are designed to develop understanding of how topics in a given chapter relate to each other. There are as many project assignments as there are chapters. Students get two weeks to complete them.

Overall, students solve exactly the same number of problems they would in a normal lecture class. Yet, those problems are scheduled in a different way. In my way, students are forced to learn by constantly re-working what was just discussed in a lecture. And for me, I can quickly react (by adjusting lecture material and speed) using constant feedback I get from students in the form of short homeworks. Win-win!

I will do benchmarking at the end of the class by comparing my class performance to aggregate data from previous years. I’ll report on it later. But for now I would be interested to hear your comments!

 

Advertisements

Nobel week 2015 October 5, 2015

Posted by apetrov in Blogroll, Physics, Science.
Tags: ,
1 comment so far

So, once again, the Nobel week is upon us. And one of the topics of conversations for the “water cooler chat” in physics departments around the world is speculations on who (besides the infamous Hungarian “physicist” — sorry for the insider joke, I can elaborate on that if asked) would get the Nobel Prize in physics this year. What is your prediction?

With invention of various metrics for “measuring scientific performance” one can make educated guesses — and even put predictions on the industrial footage — see Thomson Reuters predictions based on a number of citations (they did get the Englert-Higgs prize right, but are almost always off). Or even try your luck with on-line betting (sorry, no link here — I don’t encourage this). So there is a variety of ways to make you interested.

My predictions for 2015: Vera Rubin for Dark Matter or Deborah Jin for fermionic condensates. But you must remember that my record is no better than that of Thomson Reuters.

So, you want to go on sabbatical… February 5, 2015

Posted by apetrov in Blogroll, Near Physics, Physics, Science.
add a comment

Every seven years or so a professor in a US/Canadian University can apply for a sabbatical leave. It’s a very nice thing: your University allows you to catch up on your research, learn new techniques, write a book, etc. That is to say, you become a postdoc again. And in many cases questions arise: should I stay at my University or go somewhere else? In many cases yearlong sabbaticals are not funded by the home University, i.e. you have to find additional sources of funding to keep your salary.

I am on a year-long sabbatical this academic year. So I had to find a way to fund my sabbatical (my University only pays 60% of my salary). I spent Fall 2014 semester at Fermilab and am spending Winter 2015 semester at the University of Michigan, Ann Arbor.

Here are some helpful resources for those who are looking to fund their sabbatical next year. As you could see from the list, they are slightly tilted towards theoretical physics. Yet, there are many resources that are useful for any profession. Of course your success depends on many factors: whether or not you would like to stay in the US or go abroad, competition, etc.

  • General resources:

Guggenheim Foundation
Deadline: September

Fulbright Scholar Program
Deadline: August

  • USA/Canada:

Simons Fellowship
Deadline: September

IAS Princeton (Member/Sabbatical)
Deadline: November

Perimeter Institute:
Visitors
Visiting Professors
Deadline: November

Radcliffe Institute at Harvard University
Deadline: November

FNAL:
URA Visiting Scholar program
Intensity Frontier Fellowships
Deadline: twice a year

  • Europe:

Alexander von Humbuldt:
Friedrich Wilhelm Bessel Research Award
Humboldt Research Award
Deadline: varies

Marie Curie International Incoming Fellowships
Deadline: varies

CERN Short Term visitors
Deadline: varies

Hans Fischer Senior Fellowship (TUM-IAS, Munchen)
Deadline: varies
Some general  info that could also be useful can be found here.

I don’t pretend to have a complete list, but those sites were useful for me. I did not apply to all of those programs — and rather unfortunately, missed a deadline for the Simons Fellowship. Many University also have separate funds for sabbatical visitors. So if there is a University one wants to visit, it’s best to ask.

On a final note, it might be useful to be prepared and figure out, if you get funded, how the money/fellowship will find a way to your University and to you. Also, in many cases “60% of the salary” paid by your University while you are on a sabbatical leave means that you would have to find not only the remaining 40% of your salary, but also fringes that your University would take from your fellowship. So the amount that you’d need to find is more than 40% of your salary. Please don’t make a mistake that I made. 🙂

Good luck!